• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59546

    Título
    Multi-fault diagnosis in three-phase induction motors using data optimization and machine learning techniques
    Autor
    Bazán, Gustavo Henrique
    Goedtel, Alessandro
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Electronics, 2021, vol. 10, n. 12, 1462
    Abstract
    Induction motors are very robust, with low operating and maintenance costs, and are therefore widely used in industry. They are, however, not fault-free, with bearings and rotor bars accounting for about 50% of the total failures. This work presents a two-stage approach for three-phase induction motors diagnosis based on mutual information measures of the current signals, principal component analysis, and intelligent systems. In a first stage, the fault is identified, and, in a second stage, the severity of the defect is diagnosed. A case study is presented where different severities of bearing wear and bar breakage are analyzed. To test the robustness of the proposed method, voltage imbalances and load torque variations are considered. The results reveal the promising performance of the proposal with overall accuracies above 90% in all cases, and in many scenarios 100% of the cases are correctly classified. This work also evaluates different strategies for extracting the signals, showing the possibility of reducing the amount of information needed. Results show a satisfactory relation between efficiency and computational cost, with decreases in accuracy of less than 4% but reducing the amount of data by more than 90%, facilitating the efficient use of this method in embedded systems.
    Materias (normalizadas)
    Ingeniería eléctrica
    Motores de inducción
    Materias Unesco
    3306 Ingeniería y Tecnología Eléctricas
    Palabras Clave
    Multi-fault diagnosis
    Principal component analysis
    Pattern recognition
    Diagnóstico multifallo
    Análisis de componentes principales
    Reconocimiento de patrones
    Revisión por pares
    SI
    DOI
    10.3390/electronics10121462
    Patrocinador
    Consejo Nacional de Desarrollo Científico y Tecnológico (processes No. 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3)
    Version del Editor
    https://www.mdpi.com/2079-9292/10/12/1462
    Propietario de los Derechos
    © 2021 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59546
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [53]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Multi-Fault-Diagnosis-in-Three-Phase.pdf
    Tamaño:
    1.196Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10