Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59637
Título
Assessing the performance of the HARMONIE-AROME and WRF-ARW numerical models in North Atlantic Tropical Transitions
Autor
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Atmospheric Research, 2023, vol. 291, 106801
Résumé
Tropical cyclones (TCs) can develop as a result of the tropical transition (TT) process, which occurs when an extratropical cyclone (EC) begins to exhibit tropical characteristics, forming a TC. In this study, four TT processes that lead to a hurricane structure [Delta (2005), Ophelia (2017), Leslie (2018), and Theta (2020)] are evaluated using two high-resolution numerical models (WRF and HARMONIE-AROME). Both tracks and intensities of the cyclones are assessed by comparing the simulated minimum sea level pressure and maximum wind speed to an observational dataset. Moreover, a spatial verification is performed by comparing the MSG-SEVIRI brightness temperature (BT) and accumulated precipitation (IMERG) to the corresponding simulations accomplished by both models. Analyzing the track results, the WRF model, on average, outstands HARMONIE-AROME. However, it is the HARMONIE-AROME model that performs better than WRF when reproducing the intensity of these cyclones. Concerning the BT spatial validation, HARMONIE-AROME slightly outperformed WRF when reproducing the cyclone's structure but failed when simulating the BT amplitude. Besides, both models achieved a nearly perfect cyclone location. In terms of accumulated precipitation results, the HARMONIE-AROME model overestimates the larger structures while underestimating the smaller ones, whereas the WRF model underestimates the bigger structures, being poorly located by both models. Although it is difficult to establish which numerical model performs better, the overall results show an outstanding of the HARMONIE-AROME model over the WRF model when simulating TT processes.
Materias (normalizadas)
Matemáticas
Artificial intelligence
Materias Unesco
12 Matemáticas
Palabras Clave
Tropical Transitions
North Atlantic basin
Object-based verification
WRF
Transiciones tropicales
Cuenca del Atlántico Norte
Verificación basada en objetos
ISSN
0169-8095
Revisión por pares
SI
Patrocinador
IBERCANES (Project PID2019-105306RB-I00/AEI/10.13039/501100011033)
Ministerio de Ciencia e Innovación de España - FPI program (PRE2020-092343)
Ministerio de Ciencia e Innovación de España - FPI program (PRE2020-092343)
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional