• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/5966

    Título
    Avoiding Spurious Local Maximizers in Mixture Modeling
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Gordaliza Ramos, AlfonsoAutoridad UVA Orcid
    Matrán Bea, CarlosAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Editor
    Universidad de ValladolidAutoridad UVA
    Año del Documento
    2014
    Descripción
    Producción Científica
    Résumé
    The maximum likelihood estimation in the finite mixture of distributions setting is an ill-posed problem that is treatable, in practice, through the EM algorithm. However, the existence of spurious solutions (singularities and non-interesting local maximizers) makes difficult to find sensible mixture fits for non-expert practitioners. In this work, a constrained mixture fitting approach is presented with the aim of overcoming the troubles introduced by spurious solutions. Sound mathematical support is provided and, which is more relevant in practice, a feasible algorithm is also given. This algorithm allows for monitoring solutions in terms of the constant involved in the restrictions, which yields a natural way to discard spurious solutions and a valuable tool for data analysts.
    Materias (normalizadas)
    Statistics
    Departamento
    Estadística e IO
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/5966
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc) [9]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    avoiding_spurious.pdf
    Tamaño:
    496.6Ko
    Formato:
    Adobe PDF
    Descripción:
    Articulo
    Thumbnail
    Voir/Ouvrir
    Nombre:
    avoiding_spurious.pdf
    Tamaño:
    496.6Ko
    Formato:
    Adobe PDF
    Descripción:
    Articulo
    Thumbnail
    Voir/Ouvrir
    Attribution 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10