• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59711

    Título
    Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques
    Autor
    Imanian, Kamal
    Pourdarbani, Razieh
    Sabzi, Sajad
    García Mateos, Ginés
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Molina Martínez, José Miguel
    Año del Documento
    2021
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Foods, 2021, Vol. 10, Nº. 5, 982
    Resumo
    Potatoes are one of the most demanded products due to their richness in nutrients. However, the lack of attention to external and, especially, internal defects greatly reduces its marketability and makes it prone to a variety of diseases. The present study aims to identify healthy-looking potatoes but with internal defects. A visible (Vis), near-infrared (NIR), and short-wavelength infrared (SWIR) spectrometer was used to capture spectral data from the samples. Using a hybrid of artificial neural networks (ANN) and the cultural algorithm (CA), the wavelengths of 861, 883, and 998 nm in Vis/NIR region, and 1539, 1858, and 1896 nm in the SWIR region were selected as optimal. Then, the samples were classified into either healthy or defective class using an ensemble method consisting of four classifiers, namely hybrid ANN and imperialist competitive algorithm (ANN-ICA), hybrid ANN and harmony search algorithm (ANN-HS), linear discriminant analysis (LDA), and k-nearest neighbors (KNN), combined with the majority voting (MV) rule. The performance of the classifier was assessed using only the selected wavelengths and using all the spectral data. The total correct classification rates using all the spectral data were 96.3% and 86.1% in SWIR and Vis/NIR ranges, respectively, and using the optimal wavelengths 94.1% and 83.4% in SWIR and Vis/NIR, respectively. The statistical tests revealed that there are no significant differences between these datasets. Interestingly, the best results were obtained using only LDA, achieving 97.7% accuracy for the selected wavelengths in the SWIR spectral range.
    Materias (normalizadas)
    Potatoes
    Patata
    Plant Sciences
    Infrared spectroscopy
    Espectroscopia
    Computational intelligence
    Patata - Mejoramiento
    Alimentos - Análisis
    Materias Unesco
    31 Ciencias Agrarias
    3309 Tecnología de Los Alimentos
    ISSN
    2304-8158
    Revisión por pares
    SI
    DOI
    10.3390/foods10050982
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades; Ministerio de Ciencia e Innovación; Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) - (grant RTI2018-098156-B-C53)
    Version del Editor
    https://www.mdpi.com/2304-8158/10/5/982
    Propietario de los Derechos
    © 2021 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59711
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [362]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Identification-of-Internal-Defects-in-Potato.pdf
    Tamaño:
    1.803Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10