Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59753
Título
Computational modeling of metallic nanoclusters and nano-alloys for catalytic and corrosion applications.
Autor
Director o Tutor
Año del Documento
2022
Titulación
Doctorado en Física
Zusammenfassung
The field of Material Science within the realm of Nanophysics has become one of the most thriving research areas. Indeed, due to its emphasis on practical applications, it is a decisive ally to face the challenges of the humankind. Nowadays, one of these challenges comprises the discovery and efficiency of new materials. As such, protection against degradation becomes a fundamental part in Nanoscience. When dealing with metals, an ubiquitous degradation of these comes in the form of their interaction with the atmosphere. Oxidation and the attack of several corroding agents imply the loss of the metallic surface. This undermines the metallic properties and can result in the collapse of the metallic structure if nothing is done to stop the electrochemical reaction. The corrosion problem entails a huge economic cost for the industry, being addressed through available control practices: techniques such as galvanization and stainless-steel alloys are used to prevent metals from rusting, and are widely used for such purpose. The galvanization is the process of applying a protective zinc coating over the metallic surface. After reacting with the atmospheric oxygen and corroding agents, it is the oxidized zinc layer and the related corrosion products the ones that protect the metal from corroding, either with oxygen or any other corroding agent. This way, the zinc layer serves as a sacrificial coating which provides barrier and galvanic protection to the steel substrates employed in industry. It has been found however, that adding magnesium to the zinc layer to form an alloy improves the protective properties of the coating. Not only the oxidized protective layer is created faster, but also the time for growing significant amounts of rust upon corrosion is longer compared to bare zinc. More in detail, the Zn11Mg2 y Zn2Mg stoichiometries have been found to be the most suitable to optimize the protection against corrosion according to experimental evidence. The reasons for such quality are, however, not well known. The intricate physical, chemical and thermodynamical processes involved are difficult to understand in depth without a quantum-mechanical analysis. The objective of this thesis is to unveil the fundamental aspects that trigger the optimal anticorrosive properties of Zn-Mg coatings. Given the vastness of the problem, we will focus on the formation of the initial oxidized surface layer, over which the corrosion products would grow to ultimately conform the protective layer. To this aim, a detailed quantum-mechanical treatment relying on ab-initio techniques, particularly Density Functional Theory based methods, is performed.
To study the complex corrosion process, we rely on cluster models. These are simple yet useful computational models for an initial study of the intricate processes that operate in the real extended surfaces. Characterisation of structures is a central task in this thesis, so the development of algorithms and protocols to seek and discover stable structures comprises the core of this work. One of these methods entails novel Machine Learning methods, such as the Neural Network potentials. These are shown to clearly outperform standard empirical potentials. Afterwards, an analysis of the initial stages of the corrosion problem by means of ab-initio methods is performed. It is found that small amounts of Mg create a very positive synergy between Zn and Mg that increases the reactivity to oxygen while reducing, at the same time, the stress induced on the cluster substrate, both facts working in favor of promoting the growth of the oxide crust whilst protecting the core. Moreover, stoichiometries close to the Mg2Zn11 and MgZn2 compositions are found to be the best candidates to optimize the protection against corrosion in Zn-Mg alloys, in agreement with the experimental observations. El campo de la Ciencia de Materiales se ha convertido en una de las áreas más prolíficas de investigación. Dado su especial énfasis en las aplicaciones prácticas, se ha convertido en un aliado decisivo a la hora de afrontar los retos que tiene la humanidad. Hoy en día, uno de estos retos incluye el descubrimiento de nuevos materiales, así como la eficiencia de los mismos. De esta manera, la protección frente a la degradación de estos materiales toma una importancia central. En sistemas basados en metal, una interacción omnipresente en la atmósfera terrestre es la de la corrosión, consistente en el deterioro del metal a consecuencia de la oxidación y de otros ataques electroquímicos. Se trata de un problema industrial de gran importancia y de alto costo económico. De este modo, varias técnicas como el galvanizado y las aleaciones inoxidables se emplean de forma sistemática. En el caso del galvanizado o cincado, el metal a proteger se recubre con una capa de zinc. Además de mejorar su aspecto visual, el zinc, al reaccionar con el oxígeno y otros agentes corrosivos como Cl- y agua, forma una capa de óxido y otros productos derivados de la corrosión que protege el interior del metal de la oxidación y corrosión. Sin embargo, se ha encontrado que la incorporación de magnesio para formar una aleación con el zinc resulta en una creación más eficiente de la capa protectora: la formación de la capa de óxido es más rápida, y es más efectiva en el aislamiento del exterior. En particular, las composiciones Zn11Mg2 y Zn2Mg se encuentran como las más indicadas para maximizar la eficiencia de la capa protectora según la evidencia experimental. Las razones de esta cualidad no son, sin embargo, bien conocidas. El proceso de la corrosión implica procesos físicos, químicos y termodinámicos en diferentes etapas, que resultan en la capa aislante final. Este proceso intermedio de corrosión es, en consecuencia, muy complejo de estudiar y de modelizar a escala nanométrica y donde, en todo caso, reside la respuesta al interrogante. El objeto de esta tesis consiste en estudiar detalladamente los mecanismos físico-químicos que determinan el proceso de corrosión sobre la aleación Zn-Mg, mediante un detallado análisis mecánico-cuántico empleando métodos ab-initio o de primeros principios basados fundamentalmente en la Teoría del Funcional de la Densidad (DFT).
Para estudiar el complejo problema de la corrosión, en esta tesis se emplean modelos basados en agregados atómicos o clústers. El problema de la búsqueda estructural es central en esta tesis, tanto en la localización de agregados de mínima energía como en la obtención de productos derivados de la corrosión. De este modo, en primer lugar se desarrollan técnicas para la obtención de estructuras de mínima energía, basadas en modelos numéricos que aproximadamente representen las interacciones atómicas en el sistema. Una de éstas se basa en una técnica de Machine Learning: los potenciales basados en redes neuronales. Se encuentra que su rendimiento es mucho mayor comparado con los potenciales empíricos estándar. Posteriormente, se inicia el estudio inicial de la corrosión sobre clústers de 20 átomos, de diferentes estequiometrías. Se encuentra una positiva sinergia entre el zinc y el magnesio, la cual produce un crecimiento homogéneo de la superficie oxidada al mismo tiempo que protege el interior del agregado. Del mismo modo, se encuentra que las composiciones cercanas a Mg2Zn11 y MgZn2 son las más adecuadas para optimizar la protección frente a la corrosión, en acuerdo con la evidencia experimental. Una última etapa, basada en la formación completa de la capa protectora queda pendiente de explorar.
Materias (normalizadas)
Física nuclear
Ciencia de los materiales
Materias Unesco
220 Física Atómica y Nuclear
Palabras Clave
Corrosion
Corrosión
Reactivity
Reactividad
Nanosclusters
Nanoagregados
Departamento
Escuela de Doctorado
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
- Tesis doctorales UVa [2321]
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International