• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59944

    Título
    A human oriented Privacy Impact Metric for mobile apps
    Autor
    Aparicio De La Fuente, AmadorAutoridad UVA Orcid
    Crespo Guerrero, Javier
    Martínez González, María MercedesAutoridad UVA Orcid
    Cardeñoso Payo, ValentínAutoridad UVA Orcid
    Congreso
    Data Privacy Management
    Año del Documento
    2023
    Descripción
    Producción Científica
    Abstract
    Android is the operating system with the largest presence on mobile devices. The permissions mechanism is used to grant or restrict the access of applications to the device’s data and resources. Applications request permission to access them and users decide whether to grant or deny them. Our proposal is to obtain a permissions-based metric, easy to use for device owners, to provide them with guidance on the risk to their privacy that they assume when they install an app on their device and how to minimize this risk. A distinctive feature compared to other proposals is that we use permission groups as one of the parameters. These permission groups express concepts that are more accessible to any type of user than individual permissions and are what users can actually act on. This has the advantage of being easier for users to understand. To facilitate its use, we have developed a service that allows you to consult it, but also to perform simulations to check how granting or denying each group of permissions requested by an application affects before making decisions and taking risks on the device itself. We thus introduce the criterion of usability, which allows us to obtain a more human technology, available to empowered users.
    Palabras Clave
    Android
    Privacy
    Permissions Groups
    Malware
    Metrics
    Security
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59944
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP41 - Comunicaciones a congresos, conferencias, etc. [101]
    Show full item record
    Files in this item
    Nombre:
    DPM2023_V7_Preprint_English.pdf
    Tamaño:
    492.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    CC0 1.0 UniversalExcept where otherwise noted, this item's license is described as CC0 1.0 Universal

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10