Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59954
Título
Wavelet analysis of overnight airflow to detect obstructive sleep apnea in children
Autor
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2021, Vol. 21, Nª. 4, 1491
Resumo
This study focused on the automatic analysis of the airflow signal (AF) to aid in the diagnosis of pediatric obstructive sleep apnea (OSA). Thus, our aims were: (i) to characterize the overnight AF characteristics using discrete wavelet transform (DWT) approach, (ii) to evaluate its diagnostic utility, and (iii) to assess its complementarity with the 3% oxygen desaturation index (ODI3). In order to reach these goals, we analyzed 946 overnight pediatric AF recordings in three stages: (i) DWT-derived feature extraction, (ii) feature selection, and (iii) pattern recognition. AF recordings from OSA patients showed both lower detail coefficients and decreased activity associated with the normal breathing band. Wavelet analysis also revealed that OSA disturbed the frequency and energy distribution of the AF signal, increasing its irregularity. Moreover, the information obtained from the wavelet analysis was complementary to ODI3. In this regard, the combination of both wavelet information and ODI3 achieved high diagnostic accuracy using the common OSA-positive cutoffs: 77.97%, 81.91%, and 90.99% (AdaBoost.M2), and 81.96%, 82.14%, and 90.69% (Bayesian multi-layer perceptron) for 1, 5, and 10 apneic events/hour, respectively. Hence, these findings suggest that DWT properly characterizes OSA-related severity as embedded in nocturnal AF, and could simplify the diagnosis of pediatric OSA.
Materias (normalizadas)
Bayesian statistical decision theory
Estadística bayesiana
Estadística matemática
Air flow - Mathematical models
Child care
Sleep apnea syndromes
Apnea del sueño
Wavelets (Mathematics)
Mathematical analysis
Análisis matemático
Materias Unesco
12 Matemáticas
1209.01 Estadística Analítica
3201.10 Pediatría
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) - (Projects DPI2017-84280-R and RTC-2017-6516-1)
Comisión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (POCTEP 0702_MIGRAINEE_2_E)
Instituto de Salud Carlos III y Fondo Europeo de Desarrollo Regional (FEDER) - (CIBER-BBN)
Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación y Fondo Social Europeo - (grant RYC2019- 028566-I)
Ministerio de Educación, Cultura y Deporte - (grant FPU16/02938)
Institutes of Health - (grants HL130984, HL140548, and AG061824)
Comisión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (POCTEP 0702_MIGRAINEE_2_E)
Instituto de Salud Carlos III y Fondo Europeo de Desarrollo Regional (FEDER) - (CIBER-BBN)
Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación y Fondo Social Europeo - (grant RYC2019- 028566-I)
Ministerio de Educación, Cultura y Deporte - (grant FPU16/02938)
Institutes of Health - (grants HL130984, HL140548, and AG061824)
Version del Editor
Propietario de los Derechos
© 2021 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional