Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60015
Título
Comparison of the ammonia trapping performance of different gas-permeable tubular membrane system configurations
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Membranes, 2022, Vol. 12, Nº. 11, 1104
Resumo
The technology of gas-permeable tubular membranes (GPMs) is promising in reducing ammonia emissions from livestock manure, capturing NH3 in an acidic solution, and obtaining final products suitable for valorization as fertilizers, in line with the principles of the circular economy. This study aimed to evaluate the performance of several e-PTFE membrane systems with different configurations for the recovery of NH3 released from pig slurry. Ten different configurations were tested: only a submerged membrane, only a suspended membrane in the same chamber, only a suspended membrane in an annex chamber, a submerged membrane + a suspended membrane in the same chamber, and a submerged membrane + a suspended membrane in an annex chamber, considering in each case the scenarios without and with agitation and aeration of the slurry. In all tests, sulfuric acid (1N H2SO4) was used as the NH3 capture solution, which circulated at a flow rate of 2.1 L·h−1. The results showed that NH3-N removal rates ranged from 36–39% (for systems with a single submerged or suspended membrane without agitation or aeration of the slurry) to 70–72% for submerged + suspended GPM systems with agitation and aeration. In turn, NH3-N recovery rates were found to be between 44–54% (for systems with a single membrane suspended in an annex compartment) and 88–91% (for systems based on a single submerged membrane). However, when choosing a system for farm deployment, it is essential to consider not only the capture and recovery performance of the system, but also the investment and operating costs (ranging from 9.8 to 21.2 €/kg N recovered depending on the selected configuration). The overall assessment suggests that the simplest systems, based on a single membrane, may be the most recommendable.
Materias (normalizadas)
Ammonia
Amoniaco
Membranes (Technology)
Membranas (Tecnología)
Materias Unesco
3303 Ingeniería y Tecnología Químicas
Palabras Clave
Ammonia recovery
Recuperación de amoníaco
Gas-permeable membrane
Membrana permeable al gas
Submerged GPM system
Sistema GPM sumergido
Suspended GPM system
Sistema GPM suspendido
ISSN
2077-0375
Revisión por pares
SI
Patrocinador
Unión Europea - (project LIFE20 ENV/ES/000858)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional