• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60020

    Título
    An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network
    Autor
    Shafi, Imran
    Din, Sadia
    Khan, Asim
    Torre Díez, Isabel de laAutoridad UVA
    Pali Casanova, Ramón del Jesús
    Pifarre, Kilian Tutusaus
    Ashraf, Imran
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Cancers, 2022, Vol. 4, Nº. 21, 5457
    Abstract
    The diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature, especially given the repeated radiation exposure and high cost of computed tomography(CT). Examining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided design (CAD) model identifies the physiological and pathological changes in the soft tissues of the cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring and comparing the selected profile values in CT images obtained from patients and control patients at their diagnosis. Then, the model is tested and validated using the CT scans of both patients and control patients that are not shown in the training phase. The study investigates 888 annotated CT scans from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer. It is found superior to other existing methods including complex deep learning, simple machine learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung cancer and facilitating the timely management of patients.
    Materias (normalizadas)
    Lungs - Cancer
    Lungs - Diseases - Diagnosis
    Lungs - Cancer - Treatment
    Cancer - Diagnosis
    Pulmones - Cáncer
    Pulmones - Cáncer - Diagnóstico
    Radiology
    Tomografía computada
    Pulmones - Radiografia
    Oncology
    Materias Unesco
    3201.01 Oncología
    ISSN
    2072-6694
    Revisión por pares
    SI
    DOI
    10.3390/cancers14215457
    Version del Editor
    https://www.mdpi.com/2072-6694/14/21/5457
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/60020
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    An-Effective-Method-for-Lung-Cancer-Diagnosis.pdf
    Tamaño:
    1.813Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Genes associated with metabolic syndrome predict disease-free survival in stage II colorectal cancer patients. A novel link between metabolic dysregulation and colorectal cancer 

      Vargas, Teodoro; Moreno Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas Garrachón, MargaritaAutoridad UVA; Ramos, Ricardo; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B.; Reglero, Guillermo; Feliu, Jaime; Ramírez de Molina, Ana (2014)
    • Thumbnail

      Análisis del tratamiento dado a la traducción inglés-español del léxico del cáncer de mama en la página web del National Cancer Institute de los Estados Unidos de América 

      García Masa, Alba (2015)
    • Thumbnail

      Predictores de riesgo en cáncer gástrico. Estudio sobre las manifestaciones clínicas y forma de presentación del cáncer gástrico y su influencia en el pronóstico 

      Manero Rebé, Clara (2022)

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10