• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60054

    Título
    White blood cell classification using texture and RGB features of oversampled microscopic images
    Autor
    Rustam, Furqan
    Aslam, Naila
    Torre Díez, Isabel de laAutoridad UVA
    Khan, Yaser Daanial
    Vidal Mazón, Juan Luis
    Rodríguez, Carmen Lili
    Ashraf, Imran
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Healthcare, 2022, Vol. 10, Nº. 11, 2230
    Abstract
    White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.
    Materias (normalizadas)
    Leucocytes
    Hematology
    Sangre - Glóbulos blancos
    Blood - Diseases
    Sangre - Enfermedades
    Leukemia
    Leucemia
    Image processing
    Diagnóstico por imágenes - Técnicas digitales
    Imágenes, Sistemas de, en medicina
    Computational intelligence
    Microscopy
    Microscopia médica
    Materias Unesco
    3205.04 Hematología
    3207.13 Oncología
    2209.90 Tratamiento Digital. Imágenes
    ISSN
    2227-9032
    Revisión por pares
    SI
    DOI
    10.3390/healthcare10112230
    Version del Editor
    https://www.mdpi.com/2227-9032/10/11/2230
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/60054
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    White-Blood-Cell-Classification.pdf
    Tamaño:
    19.85Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10