• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60500

    Título
    A novel smart belt for anxiety detection, classification, and reduction using IIoMT on students’ cardiac signal and MSY
    Autor
    Pal, Rishi
    Adhikari, Deepak
    Heyat, Md Belal Bin
    Guragai, Bishal
    Lipari, Vivian
    Brito Ballester, Julien
    Torre Díez, Isabel de laAutoridad UVA
    Abbas, Zia
    Lai, Dakun
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Bioengineering, 2022, Vol. 9, Nº. 12, 793
    Abstract
    The prevalence of anxiety among university students is increasing, resulting in the negative impact on their academic and social (behavioral and emotional) development. In order for students to have competitive academic performance, the cognitive function should be strengthened by detecting and handling anxiety. Over a period of 6 weeks, this study examined how to detect anxiety and how Mano Shakti Yoga (MSY) helps reduce anxiety. Relying on cardiac signals, this study follows an integrated detection-estimation-reduction framework for anxiety using the Intelligent Internet of Medical Things (IIoMT) and MSY. IIoMT is the integration of Internet of Medical Things (wearable smart belt) and machine learning algorithms (Decision Tree (DT), Random Forest (RF), and AdaBoost (AB)). Sixty-six eligible students were selected as experiencing anxiety detected based on the results of self-rating anxiety scale (SAS) questionnaire and a smart belt. Then, the students were divided randomly into two groups: experimental and control. The experimental group followed an MSY intervention for one hour twice a week, while the control group followed their own daily routine. Machine learning algorithms are used to analyze the data obtained from the smart belt. MSY is an alternative improvement for the immune system that helps reduce anxiety. All the results illustrate that the experimental group reduced anxiety with a significant (p < 0.05) difference in group × time interaction compared to the control group. The intelligent techniques achieved maximum accuracy of 80% on using RF algorithm. Thus, students can practice MSY and concentrate on their objectives by improving their intelligence, attention, and memory.
    Materias (normalizadas)
    Yoga
    Anxiety
    Ansiedad
    Machine learning
    Aprendizaje automático
    Internet of things
    Artificial intelligence - Medical applications
    Inteligencia artificial - Aplicaciones médicas
    Artificial intelligence
    Students
    Estudiantes
    Anxiety - Treatment
    Ansiedad - Tratamiento
    Integrative medicine
    Exercise
    Ejercicio
    Health
    Salud
    Brain
    Cerebro
    Mental health
    Salud mental
    Materias Unesco
    1203.04 Inteligencia Artificial
    3212 Salud Publica
    ISSN
    2306-5354
    Revisión por pares
    SI
    DOI
    10.3390/bioengineering9120793
    Patrocinador
    Sichuan Science y Programa de Tecnología - (2020YJ0225)
    China NSFC - (U2001207 y 61872248)
    Guangdong NSF - (2017A03031200385)
    Fundación de Ciencia y Tecnología de Shenzhen - (ZDSYS20190902092853047 y R2020A045)
    Project of DEGP - (2019KCXTD005)
    Guangdong “Pearl River Talent Recruitment Program” - (2019ZT08X603)
    Version del Editor
    https://www.mdpi.com/2306-5354/9/12/793
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/60500
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Fast-Chromatographic-Determination-of-Free-Amino-Acids.pdf
    Tamaño:
    1.091Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10