• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61641

    Título
    An artificial neural network model for water quality and water consumption prediction
    Autor
    Rustam, Furqan
    Ishaq, Abid
    Kokab, Sayyida Tabinda
    Torre Díez, Isabel de laAutoridad UVA
    Vidal Mazón, Juan Luis
    Rodríguez, Carmen Lili
    Ashraf, Imran
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Water, 2022, Vol. 14, Nº. 21, 3359
    Résumé
    With rapid urbanization, high rates of industrialization, and inappropriate waste disposal, water quality has been substantially degraded during the past decade. So, water quality prediction, an essential element for a healthy society, has become a task of great significance to protecting the water environment. Existing approaches focus predominantly on either water quality or water consumption prediction, utilizing complex algorithms that reduce the accuracy of imbalanced datasets and increase computational complexity. This study proposes a simple architecture of neural networks which is more efficient and accurate and can work for predicting both water quality and water consumption. An artificial neural network (ANN) consisting of one hidden layer and a couple of dropout and activation layers is utilized in this regard. The approach is tested using two datasets for predicting water quality and water consumption. Results show a 0.96 accuracy for water quality prediction which is better than existing studies. A 0.99 R2 score is obtained for water consumption prediction which is superior to existing state-of-the-art approaches.
    Materias (normalizadas)
    Water quality
    Water quality monitoring
    Agua - Calidad - Control
    Water consumption
    Agua - Consumo
    Water-supply
    Agua - Abastecimiento
    Neural networks (Computer science)
    Redes neuronales (Informática)
    Classification
    Artificial intelligence
    Materias Unesco
    1203.04 Inteligencia Artificial
    2508.11 Calidad de las Aguas
    ISSN
    2073-4441
    Revisión por pares
    SI
    DOI
    10.3390/w14213359
    Version del Editor
    https://www.mdpi.com/2073-4441/14/21/3359
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/61641
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    An-Artificial-Neural-Network-Model.pdf
    Tamaño:
    882.8Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Thumbnail

      Understanding water energy nexus in drinking water provision: an eco-efficiency assessment of water companies 

      Molinos Senante, MaríaAutoridad UVA; Maziotis, Alexandros; Sala Garrido, Ramón; Mocholí Arce, Manuel (2022)
    • Thumbnail

      Density and viscosity measurements of aqueous amines at high pressures: DEA-water, DMAE-water and TEA-water mixtures 

      Concepción Rodríguez, Eduardo Iván; Gómez Hernández, Ángel; Martín González, María del CarmenAutoridad UVA; Segovia Puras, José JuanAutoridad UVA (2017)
    • Thumbnail

      Estimating performance and savings of water leakages and unplanned water supply interruptions in drinking water providers 

      Molinos Senante, MaríaAutoridad UVA; Maziotis, Alexandros; Sala Garrido, Ramón; Mocholí Arce, Manuel (2022)

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10