• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61987

    Título
    End-to-end deep learning architectures using 3D neuroimaging biomarkers for early Alzheimer’s diagnosis
    Autor
    Agarwal, Deevyankar
    Berbís, Manuel Álvaro
    Martín Noguerol, Teodoro
    Luna, Antonio
    García Parrado, Sara Carmen
    Torre Díez, Isabel de laAutoridad UVA
    Año del Documento
    2022
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Mathematics, 2022, Vol. 10, Nº. 15, 2575
    Abstract
    This study uses magnetic resonance imaging (MRI) data to propose end-to-end learning implementing volumetric convolutional neural network (CNN) models for two binary classification tasks: Alzheimer’s disease (AD) vs. cognitively normal (CN) and stable mild cognitive impairment (sMCI) vs. AD. The baseline MP-RAGE T1 MR images of 245 AD patients and 229 with sMCI were obtained from the ADNI dataset, whereas 245 T1 MR images of CN people were obtained from the IXI dataset. All of the images were preprocessed in four steps: N4 bias field correction, denoising, brain extraction, and registration. End-to-end-learning-based deep CNNs were used to discern between different phases of AD. Eight CNN-based architectures were implemented and assessed. The DenseNet264 excelled in both types of classification, with 82.5% accuracy and 87.63% AUC for training and 81.03% accuracy for testing relating to the sMCI vs. AD and 100% accuracy and 100% AUC for training and 99.56% accuracy for testing relating to the AD vs. CN. Deep learning approaches based on CNN and end-to-end learning offer a strong tool for examining minute but complex properties in MR images which could aid in the early detection and prediction of Alzheimer’s disease in clinical settings.
    Materias (normalizadas)
    Brain - Diseases
    Cerebro - Enfermedades
    Alzheimer's disease
    Alzheimer's disease - Diagnosis
    Alzheimer, Enfermedad de
    Neural networks (Computer science)
    Convolutional neural network
    Redes neuronales (Informática)
    Machine learning
    Aprendizaje automático
    Artificial intelligence
    Mild cognitive impairment
    Magnetic resonance imaging
    Resonancia magnética
    Neurology
    Neuroimaging
    Image processing
    Imágenes, Tratamiento de las
    Materias Unesco
    1203.17 Informática
    1203.04 Inteligencia Artificial
    3205.07 Neurología
    3314 Tecnología Médica
    ISSN
    2227-7390
    Revisión por pares
    SI
    DOI
    10.3390/math10152575
    Patrocinador
    Comisión Europea y Ministerio de Industria,Comercio y Turismo - (project AAL-20125036)
    Version del Editor
    https://www.mdpi.com/2227-7390/10/15/2575
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/61987
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    End-to-End-Deep-Learning-Architectures.pdf
    Tamaño:
    15.51Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10