Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61987
Título
End-to-end deep learning architectures using 3D neuroimaging biomarkers for early Alzheimer’s diagnosis
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Mathematics, 2022, Vol. 10, Nº. 15, 2575
Résumé
This study uses magnetic resonance imaging (MRI) data to propose end-to-end learning implementing volumetric convolutional neural network (CNN) models for two binary classification tasks: Alzheimer’s disease (AD) vs. cognitively normal (CN) and stable mild cognitive impairment (sMCI) vs. AD. The baseline MP-RAGE T1 MR images of 245 AD patients and 229 with sMCI were obtained from the ADNI dataset, whereas 245 T1 MR images of CN people were obtained from the IXI dataset. All of the images were preprocessed in four steps: N4 bias field correction, denoising, brain extraction, and registration. End-to-end-learning-based deep CNNs were used to discern between different phases of AD. Eight CNN-based architectures were implemented and assessed. The DenseNet264 excelled in both types of classification, with 82.5% accuracy and 87.63% AUC for training and 81.03% accuracy for testing relating to the sMCI vs. AD and 100% accuracy and 100% AUC for training and 99.56% accuracy for testing relating to the AD vs. CN. Deep learning approaches based on CNN and end-to-end learning offer a strong tool for examining minute but complex properties in MR images which could aid in the early detection and prediction of Alzheimer’s disease in clinical settings.
Materias (normalizadas)
Brain - Diseases
Cerebro - Enfermedades
Alzheimer's disease
Alzheimer's disease - Diagnosis
Alzheimer, Enfermedad de
Neural networks (Computer science)
Convolutional neural network
Redes neuronales (Informática)
Machine learning
Aprendizaje automático
Artificial intelligence
Mild cognitive impairment
Magnetic resonance imaging
Resonancia magnética
Neurology
Neuroimaging
Image processing
Imágenes, Tratamiento de las
Materias Unesco
1203.17 Informática
1203.04 Inteligencia Artificial
3205.07 Neurología
3314 Tecnología Médica
ISSN
2227-7390
Revisión por pares
SI
Patrocinador
Comisión Europea y Ministerio de Industria,Comercio y Turismo - (project AAL-20125036)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional