• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62320

    Título
    Efficient optimization of actor-critic learning for constrained resource orchestration in RAN with network slicing
    Autor
    Janjua, Hafiza KanwalAutoridad UVA
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Durán Barroso, Ramón JoséAutoridad UVA Orcid
    González de Dios, Óscar
    Aguado Manzano, Juan CarlosAutoridad UVA Orcid
    Merayo Álvarez, NoemíAutoridad UVA Orcid
    Fernández Reguero, PatriciaAutoridad UVA Orcid
    Lorenzo Toledo, Rubén MateoAutoridad UVA Orcid
    Congreso
    2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)
    Año del Documento
    2023
    Editorial
    Institute of Electrical and Electronics Engineers (IEEE)
    Descripción Física
    4 p.
    Documento Fuente
    2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 2023, pp. 100-104
    Resumo
    Network Slicing (NS) is a key enabler of the 5G network ecosystem due to its potential to provide distinct services over the same physical infrastructure. However, the necessity to optimally orchestrate resources for heterogeneous demands is crucial when dealing with resource constraints and Quality-of-Service (QoS) requirements. We consider a radio access network scenario providing NS over multiple base stations (BS) with limited resources, and we design an efficient resource orchestration technique, based on reinforcement learning, which optimizes resource utilization among different services while satisfying the constraints and complying with Service Level Agreement (SLA) and QoS requirements. The proposed technique makes use of the Trust Region Method to formulate the orchestration objective function and satisfy the constraints and is then optimized via Kronecker Factored Approximate Curvature (K-FAC). Extensive simulations demonstrate that the proposed technique outperforms other Reinforcement Learning (RL) algorithms, reaching 99% of QoS and SLA satisfaction while assuring bandwidth constraints.
    Palabras Clave
    Network Slicing
    Resource Orchestration
    Reinforcement Learning
    Constrained Optimization
    DOI
    10.1109/ICIN56760.2023.10073489
    Patrocinador
    EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)
    Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
    Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033)
    Version del Editor
    https://ieeexplore.ieee.org/document/10073489
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62320
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    hkjanjua_Efficient_optimization_of_actor_postprint.pdf
    Tamaño:
    621.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10