Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62366
Título
Deep Reinforcement Learning Applied to Computation Offloading of Vehicular Applications: A Comparison
Autor
Congreso
2022 International Balkan Conference on Communications and Networking (BalkanCom)
Año del Documento
2022
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Descripción Física
5 p.
Descripción
Producción Científica
Documento Fuente
2022 International Balkan Conference on Communications and Networking (BalkanCom), Sarajevo, Bosnia and Herzegovina, 2022, pp. 31-35
Zusammenfassung
An observable trend in recent years is the increasing demand for more complex services designed to be used with portable or automotive embedded devices. The problem is that these devices may lack the computational resources necessary to comply with service requirements. To solve it, cloud and edge computing, and in particular, the recent multi-access edge computing (MEC) paradigm, have been proposed. By offloading the processing of computational tasks from devices or vehicles to an external network, a larger amount of computational resources, placed in different locations, becomes accessible. However, this in turn creates the issue of deciding where each task should be executed. In this paper, we model the problem of computation offloading of vehicular applications to solve it using deep reinforcement learning (DRL) and evaluate the performance of different DRL algorithms and heuristics, showing the advantages of the former methods. Moreover, the impact of two scheduling techniques in computing nodes and two reward strategies in the DRL methods are also analyzed and discussed.
Palabras Clave
Deep Reinforcement Learning
Vehicular Applications
Computation Offloading
Edge Computing
Patrocinador
Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033 y RED2018-102585-T); EU H2020 GA no. 856967.
Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033 y RED2018-102585-T); EU H2020 GA no. 856967.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Tamaño:
591.3Kb
Formato:
Adobe PDF
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional