Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62407
Título
On the numerical approximation of Boussinesq/Boussinesq systems for internal waves
Año del Documento
2023
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
Numerical Methods for Partial Differential Equations, 2023, 39(5), pp. 3677-3704
Resumen
The present paper is concerned with the numerical approximation of a three-parameter family of Boussinesq systems. The systems have been proposed as models of the propagation of long internal waves along the interface of a two-layer system of fluids with rigid-lid condition for the upper layer and under a Boussinesq regime for the flow in both layers. We first present some theoretical properties of the systems on well-posedness, conservation laws, Hamiltonian structure, and solitary-wave solutions, using the results for analogous models for surface wave propagation. Then the corresponding periodic initial-value problem is discretized in space by the spectral Fourier Galerkin method and for each system, error estimates for the semidiscrete approximation are proved. The spectral semidiscretizations are numerically integrated in time by a fourth-order Runge–Kutta-composition method based on the implicit midpoint rule. Numerical experiments illustrate the accuracy of the fully discrete scheme, in particular its ability to simulate accurately solitary-wave solutions of the systems.
Palabras Clave
Boussinesq/Boussinesq systems
error estimates
internal waves
solitary waves
spectral methods
ISSN
0749-159X
Revisión por pares
SI
Patrocinador
PID2020-113554GB-I00/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación.
VA193P20 Junta de Castilla y León
VA193P20 Junta de Castilla y León
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional