• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62407

    Título
    On the numerical approximation of Boussinesq/Boussinesq systems for internal waves
    Autor
    Dougalis, Vassilios A.
    Saridaki, Leetha
    Durán Martín, ÁngelAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Numerical Methods for Partial Differential Equations, 2023, 39(5), pp. 3677-3704
    Résumé
    The present paper is concerned with the numerical approximation of a three-parameter family of Boussinesq systems. The systems have been proposed as models of the propagation of long internal waves along the interface of a two-layer system of fluids with rigid-lid condition for the upper layer and under a Boussinesq regime for the flow in both layers. We first present some theoretical properties of the systems on well-posedness, conservation laws, Hamiltonian structure, and solitary-wave solutions, using the results for analogous models for surface wave propagation. Then the corresponding periodic initial-value problem is discretized in space by the spectral Fourier Galerkin method and for each system, error estimates for the semidiscrete approximation are proved. The spectral semidiscretizations are numerically integrated in time by a fourth-order Runge–Kutta-composition method based on the implicit midpoint rule. Numerical experiments illustrate the accuracy of the fully discrete scheme, in particular its ability to simulate accurately solitary-wave solutions of the systems.
    Palabras Clave
    Boussinesq/Boussinesq systems
    error estimates
    internal waves
    solitary waves
    spectral methods
    ISSN
    0749-159X
    Revisión por pares
    SI
    DOI
    10.1002/num.23021
    Patrocinador
    PID2020-113554GB-I00/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación.
    VA193P20 Junta de Castilla y León
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1002/num.23021
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62407
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    2023NMPDE.pdf
    Tamaño:
    1.790Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10