Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62416
Título
Spectral discretizations analysis with time strong stability preserving properties for pseudo-parabolic models
Año del Documento
2021
Editorial
Elsevier Science
Descripción
Producción Científica
Documento Fuente
Computers and Mathematics with Applications, 2021, 102, pp. 15-44
Abstract
In this work, we study the numerical approximation of the initial-boundary-value problem of nonlinear pseudo-parabolic equations with Dirichlet boundary conditions. We propose a discretization in space with spectral schemes based on Jacobi polynomials and in time with robust schemes attending to qualitative features such as stiffness and preservation of strong stability for a more correct simulation of non-regular data. Error estimates for the corresponding semidiscrete Galerkin and collocation schemes are derived. The performance of the fully discrete methods is analyzed in a computational study.
Palabras Clave
Pseudo-parabolic equations
Spectral methods
Error estimates
Strong stability preserving methods
Non-regular data
ISSN
0898-1221
Revisión por pares
SI
Patrocinador
VA193P20 Junta de Castilla y León
PID2020-113554GB-I00/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
PID2020-113554GB-I00/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional