Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62482
Título
Comparison of machine learning algorithms in the prediction of hospitalized patients with schizophrenia
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2022, Vol. 22, Nº. 7, 2517
Zusammenfassung
New computational methods have emerged through science and technology to support the diagnosis of mental health disorders. Predictive models developed from machine learning algorithms can identify disorders such as schizophrenia and support clinical decision making. This research aims to compare the performance of machine learning algorithms: Decision Tree, AdaBoost, Random Forest, Naïve Bayes, Support Vector Machine, and k-Nearest Neighbor in the prediction of hospitalized patients with schizophrenia. The data set used in the study contains a total of 11,884 electronic admission records corresponding to 6933 patients with various mental health disorders; these records belong to the acute units of 11 public hospitals in a region of Spain. Of the total, 5968 records correspond to patients diagnosed with schizophrenia (3002 patients) and 5916 records correspond to patients with other mental health disorders (3931 patients). The results recommend Random Forest with the best accuracy of 72.7%. Furthermore, this algorithm presents 79.6%, 72.8%, 72.7%, and 72.7% for AUC, precision, F1-Score, and recall, respectively. The results obtained suggest that the use of machine learning algorithms can classify hospitalized patients with schizophrenia in this population and help in the hospital management of this type of disorder, to reduce the costs associated with hospitalization.
Materias (normalizadas)
Medical care
Atención médica
Hospitalization
Schizophrenia
Psychiatric hospitals - Sociological aspects
Schizophrenia - Treatment - Social aspects
Esquizofrenia - Pacientes - Cuidados en hospitales
Psychiatric hospital care
Atención hospitalaria psiquiátrica
Clinical psychology
Psicología clínica
Psychology
Machine learning
Aprendizaje automático
Artificial intelligence
Predictive model
Random forest
Algorithms
Algoritmos
Materias Unesco
61 Psicología
3211 Psiquiatría
1203.04 Inteligencia Artificial
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Junta de Castilla y León, Gerencia Regional de Salud - (grant GRS 1801/A/18)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional