Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62524
Título
An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals
Autor
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Biomedical Signal Processing and Control, 2024, vol. 87, Part B, 105490
Resumen
Deep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.
Materias (normalizadas)
Pediatría
Biomedical engineering
Materias Unesco
32 Ciencias Médicas
Palabras Clave
Obstructive sleep apnea
Children
Airflow
Apnea obstructiva del sueño
Niños
Flujo de aire
ISSN
1746-8094
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)
CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos III
National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)
National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)
Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I)
CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos III
National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)
National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)
Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I)
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional