Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63038
Título
Power quality monitoring strategy based on an optimized multi-domain feature selection for the detection and classification of disturbances in wind generators
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Electronics, 2022, Vol. 11, Nº. 2, 287
Resumen
Wind generation has recently become an essential renewable power supply option. Wind generators are integrated with electrical machines that require correct functionality. However, the increasing use of non-linear loads introduces undesired disturbances that may compromise the integrity of the electrical machines inside the wind generator. Therefore, this work proposes a five-step methodology for power quality disturbance detection in grids with injection of wind farm energy. First, a database with synthetic signals is generated, to be used in the training process. Then, a multi-domain feature estimation is carried out. To reduce the problematic dimensionality, the features that provide redundant information are eliminated through an optimized feature selection performed by means of a genetic algorithm and the principal component analysis. Additionally, each one of the characteristic feature matrices of every considered condition are modeled through a specific self-organizing map neuron grid so they can be shown in a 2-D representation. Since the SOM model provides a pattern of the behavior of every disturbance, they are used as inputs of the classifier, based in a softmax layer neural network that performs the power quality disturbance detection of six different conditions: healthy or normal, sag or swell voltages, transients, voltage fluctuations and harmonic distortion. Thus, the proposed method is validated using a set of synthetic signals and is then tested using two different sets of real signals from an IEEE workgroup and from a wind park located in Spain.
Materias (normalizadas)
Artificial intelligence
Electric machinery
Máquinas eléctricas
Electric generators
Generadores eléctricos
Renewable energy resources
Energías renovables
Wind power
Energía eólica
Optimization
Self-organizing maps
Electric power systems - Quality control
Energía eléctrica - Distribución - Calidad - Control
Electrical Engineering
Ingeniería eléctrica
Materias Unesco
1203.04 Inteligencia Artificial
2202.03 Electricidad
ISSN
2079-9292
Revisión por pares
SI
Patrocinador
Universidad Autónoma de Querétaro, Fondo Para El Desarrollo Del Conocimiento (FONDEC-UAQ 2020) - (project FIN202011)
Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project PGC2018-095747-B-I00)
Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (project PGC2018-095747-B-I00)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional