Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63392
Título
Deep learning-based multiclass instance segmentation for dental lesion detection
Autor
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Healthcare, 2023, Vol. 11, Nº. 3, 347
Abstract
Automated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches.
Materias (normalizadas)
Machine learning
Aprendizaje automático
Artificial intelligence - Medical applications
Inteligencia artificial - Aplicaciones médicas
Preventive dentistry
Dental hygiene
Higiene dental
Mouth - Diseases - Diagnosis
Boca - Enfermedades - Diagnóstico
Image processing
Imágenes, Tratamiento de las
Health informatics
Dentistry
Odontología
Materias Unesco
1203.04 Inteligencia Artificial
1203.17 Informática
3213.13 Ortodoncia-Estomatología
ISSN
2227-9032
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2023 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Atribución 4.0 Internacional