Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63408
Título
Assessment of oak groves conservation statuses in Natura 2000 sacs with single photon Lidar and Sentinel-2 data
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Remote Sensing, 2023, Vol. 15, Nº. 3, 710
Zusammenfassung
Among the main objectives of Natura 2000 Network sites management plans is monitoring their conservation status under a reasonable cost and with high temporal frequency. The aim of this study is to assess the ability of single-photon light detection and ranging (LiDAR) technology (14 points per m2) and Sentinel-2 data to classify the conservation status of oak forests in four special areas of conservation in Navarra Province (Spain) that comprise three habitats. To capture the variability of conservation status within the three habitats, we first performed a random stratified sampling based on conservation status measured in the field, canopy cover, and terrain slope and height. Thereafter, we compared two metric selection approaches, namely Kruskal–Wallis and Dunn tests, and two machine learning classification methods, random forest (RF) and support vector machine (SVM), to classify the conservation statuses using LiDAR and Sentinel-2 data. The best-fit classification model, which included only LiDAR metrics, was obtained using the random forest method, with an overall classification accuracy after validation of 83.01%, 75.51%, and 88.25% for Quercus robur (9160), Quercus pyrenaica (9230), and Quercus faginea (9240) habitats, respectively. The models include three to six LiDAR metrics, with the structural diversity indices (LiDAR height evenness index, LHEI, and LiDAR height diversity index, LHDI) and canopy cover (FCC) being the most relevant ones. The inclusion of the NDVI index from the Sentinel-2 image did not improve the classification accuracy significantly. This approach demonstrates its value for classifying and subsequently mapping conservation statuses in oak groves and other Natura 2000 Network habitat sites at a regional scale, which could serve for more effective monitoring and management of high biodiversity habitats.
Materias (normalizadas)
Nature conservation
Naturaleza - Conservación
Landscape Ecology
Ecología del paisaje
Environnement - Gestion - Europe
Medio ambiente - Países de la Unión Europea
Bosques - Europa
Bosques - Gestión - Europa
Forest management - Europe
Forests and forestry
Bosques y silvicultura
Forest mapping
Optical radar
Machine learning
Aprendizaje automático
Artificial intelligence
Bosques - Conservación - España - Navarra
Materias Unesco
3106 Ciencia Forestal
3106.08 Silvicultura
5902.08 Política del Medio Ambiente
1203.04 Inteligencia Artificial
Palabras Clave
LiDAR
Sentinel -2
ISSN
2072-4292
Revisión por pares
SI
Patrocinador
Ayudas Margarita Salas, European Union-Next GenerationEU - (grant MS-240621)
Version del Editor
Propietario de los Derechos
© 2023 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional