• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Química Analítica
    • DEP60 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Química Analítica
    • DEP60 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64309

    Título
    Detection of Triacetone Triperoxide in air combining SnO2 sensor e-nose enhanced with a kinetic model
    Autor
    López, Raúl
    Vega Alegre, María del SolAutoridad UVA Orcid
    Debán Miguel, LuisAutoridad UVA Orcid
    Pardo Almudí, RafaelAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Sensors and Actuators B: Chemical, 2024, 403, 135242
    Résumé
    In the domain of high-temperature semiconductor arrays for electronic noses (e-noses), Metal Oxide Sensors (MOS) have a pivotal role despite their non-linear response to chemical vapors. A prevalent approach to enhance the identification algorithm's performance involves implementing mathematical models during the MOS signal processing. However, certain models rely solely on mathematical goodness-of-fit, overlooking crucial features that render practical e-nose applications ineffective. This paper introduces a theoretical model for the qualitative analysis of MOS signals, focusing on two primary diffusion processes: analyte migration to the sensor's surface and the subsequent dispersion of some of these molecules within the MOS bulk. Additionally, this work discusses a model validation using an ad-hoc e-nose, built with SnO2 gas sensors, and six organic chemicals, detailing main data processing steps. Finally, disclosed results showcase a high success rate for Triacetone Triperoxide (TATP) identification, one of the most significant threats among homemade explosives (HME). The presented conclusions underscore the enhanced efficacy of the proposed signal model for e-nose vapors identification and its practical utility in strengthening pre-emptive HME identification to enhance public safety.
    Revisión por pares
    SI
    DOI
    10.1016/j.snb.2023.135242
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0925400523019603
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64309
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP60 - Artículos de revista [112]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    SNB_Pre-print_version_2023.pdf
    Tamaño:
    2.449Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10