Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64320
Título
Finite-Time Stability for Discrete-Time Systems with Time-Varying Delays and Nonlinear Perturbations Using Relaxed Summation Inequality
Autor
Año del Documento
2023
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Octubre , 2023
Abstract
This article deals with the problem of delay-dependent finite-time stability (FTS) for delayed discrete-time systems with
nonlinear perturbations. First, based on a Lyapunov–Krasovskii Functional, delay-dependent FTS conditions are provided
by introducing some free-weighting matrices. Then, a new reduced free-matrix-based inequality is established to estimate
the single summation term. The dimensions of these free matrices integral in our results are less than those obtained in the
literature. This reduction in the number of variables does not mean that our method is a particular case but simply that our
approach is completely different from the others and therefore our method is more effective. Thus, less conservative design
conditions are obtained in this paper in terms of linear matrix inequalities (LMIs) and solved using MATLAB’s LMI
toolbox to achieve the desired performance. The purpose of this paper is to derive sufficient conditions that ensure the
finite-time stability of the discrete-time system. Finally, numerical examples are examined to show the advantage and
effectiveness of the proposed results.
Materias (normalizadas)
331005
Materias Unesco
331005
Palabras Clave
Finite time stability (FTS) Delayed discrete-time systems Nonlinear perturbations Reduced free-matrixbased inequality
ISSN
2228-6179
Revisión por pares
SI
Patrocinador
MICInn, PID2021-123654OB-C31
MICInn, PID2020-112871RB-C21
MICInn, PID2020-112871RB-C21
Version del Editor
Propietario de los Derechos
Propietario de los derechos: Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Files in questo item
Nombre:
Tamaño:
222.1Kb
Formato:
Adobe PDF
Descripción:
Fichero previo a la aceptación