• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64337

    Título
    Fast 4D elastic group-wise image registration. Convolutional interpolation revisited
    Autor
    Menchon Lara, Rosa MaríaAutoridad UVA
    Royuela del Val, Javier
    Simmross Wattenberg, Federico JesúsAutoridad UVA Orcid
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Martín Fernández, Marcos AntonioAutoridad UVA Orcid
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2021
    Documento Fuente
    Computer Methods and Programs in Biomedicine, March 2021, vol. 200
    Abstract
    Background and Objective:This paper proposes a new and highly efficient implementation of 3D+t groupwise registration based on the free-form deformation paradigm. Methods:Deformation is posed as a cascade of 1D convolutions, achieving great reduction in execution time for evaluation of transformations and gradients. Results:The proposed method has been applied to 4D cardiac MRI and 4D thoracic CT monomodal datasets. Results show an average runtime reduction above 90%, both in CPU and GPU executions, compared with the classical tensor product formulation. Conclusions:Our implementation, although fully developed for the metric sum of squared differences, can be extended to other metrics and its adaptation to multiresolution strategies is straightforward. Therefore, it can be extremely useful to speed up image registration procedures in different applications where high dimensional data are involved.
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2020.105812
    Patrocinador
    MEC-TEC2017-82408- R
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64337
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    restrictedAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    RosaPrePrint.pdf
    Tamaño:
    1.313Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10