• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64361

    Título
    Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces
    Autor
    Cuesta Montero, EduardoAutoridad UVA Orcid
    Ponce, Rodrigo
    Año del Documento
    2021-03-01
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computers & Mathematics with Applications, March 2021 vol. 85, p. 57-68.
    Abstract
    In the present work the optimal regularity, in the sense of Hölder continuity, of linear and semi-linear abstract fractional differential equations is investigated in the framework of complex Banach spaces. This framework has been considered by the authors as the most convenient to provide a posteriori error estimates for the time discretizations of such a kind of abstract differential equations. In the spirit of the classical a posteriori error estimates, under certain assumptions, the error is bounded in terms of computable quantities, in our case measured in the norm of Hölder continuous and weighted Hölder continuous functions.
    Palabras Clave
    A posteriori error estimates; Fractional differential equations; Nonlinear equations; Sectorial operators; Hölder continuity; Optimal regularity
    ISSN
    0898-1221
    Revisión por pares
    SI
    DOI
    10.1016/j.camwa.2021.01.010
    Patrocinador
    Ministerio de Economía y Competitividad. RTI2018-094569-B100. Fog Research Institute under contract no. FRI-454.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64361
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    2021-ECuesta(2).pdf
    Tamaño:
    378.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10