Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64373
Título
Abstract fractional linear pseudo-parabolic equations in Banach spaces: well-posedness, regularity, and asymptotic behavior
Año del Documento
2022-10-26
Editorial
ELSEVIER
Descripción
Producción Científica
Documento Fuente
Fractional Calculus and Applied Analysis, October 2022, vol. 25, pp. 2332–2355.
Abstract
In this paper we study the well-posedness, regularity, and asymptotic behavior of the solutions \red{to} the \red{abstract} pseudo-parabolic equation $\partial_t^\alpha u(t) = A u(t) + B\partial_t^\beta u(t) + f(t),$ where $A,B$ are closed linear operators in a Banach space, and $\partial_t^\gamma u$ denotes the Caputo or Riemann--Liouville fractional derivative of order \red{$\gamma>0$.}
Palabras Clave
Fractional calculus (primary); Pseudo-parabolic equations; Evolution families
Revisión por pares
SI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional