• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64389

    Título
    Laboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnostics
    Autor
    Jarrott, L. C.
    Liedahl, D. A.
    Marley, E. V.
    Kemp, G. E.
    Heeter, R. F.
    Emig, J. A.
    Foord, M. E.
    Widmann, K.
    Jaquez, J.
    Huang, H.
    Rose, S. J.
    Wark, J. S.
    Schneider, M. B.
    Pérez Callejo, GabrielAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    American Institute of Physics
    Documento Fuente
    Physics of Plasmas, Junio 2019, vol. 26, p. 063302
    Abstract
    Understanding the effects of radiative transfer in High Energy Density Physics experiments is critical for the characterization of the thermodynamic properties of highly ionized matter, in particular in Inertial Confinement Fusion (ICF). We report on non-Local Thermodynamic Equilibrium experiments on cylindrical targets carried out at the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY, which aim to characterize these effects. In these experiments, a 50/50 mixture of iron and vanadium, with a thickness of 2000 Å and a diameter of 250 μm, is contained within a beryllium tamper, with a thickness of 10 μm and a diameter of 1000 μm. Each side of the beryllium tamper is then irradiated using 18 of the 60 Omega beams with an intensity of roughly 3 × 1014 W cm−2 per side, over a duration of 3 ns. Spectroscopic measurements show that a plasma temperature on the order of 2 keV was produced. Imaging data show that the plasma remains cylindrical, with geometrical aspect ratios (quotient between the height and the radius of the cylinder) from 0.4 to 2.0. The temperatures in this experiment were kept sufficiently low (∼1–2 keV) so that the optically thin Li-like satellite emission could be used for temperature diagnosis. This allowed for the characterization of optical-depth-dependent geometric effects in the vanadium line emission. Simulations present good agreement with the data, which allows this study to benchmark these effects in order to take them into account to deduce temperature and density in future ICF experiments, such as those performed at the National Ignition Facility.
    ISSN
    1070-664X
    Revisión por pares
    SI
    DOI
    10.1063/1.5096972
    Patrocinador
    LLNL under Grant No. B617350. The National Nuclear Security Administration under Contract No. DE-NA0001808. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64389
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP33 - Artículos de revista [203]
    Show full item record
    Files in this item
    Nombre:
    PerezCallejo_PoP_2019.pdf
    Tamaño:
    3.098Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10