Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64390
Título
Cylindrical implosion platform for the study of highly magnetized plasmas at Laser MegaJoule
Autor
Año del Documento
2022
Editorial
American Physical Society
Descripción
Producción Científica
Documento Fuente
Physical Review E, September 2022, vol. 106, p. 035206
Resumo
Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments
has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40 g/cm3 to 7 g/cm3). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.
ISSN
2470-0045
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación PID2019-108764RB-I00 del Ministerio de Ciencia e Innovación y de la Research Grant No. CEI2020-FEI02 de la Consejería de Economía, Industria, Comercio y Conocimiento del Gobierno de Canarias
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional