• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64400

    Título
    A novel method to measure ion density in ICF experiments using x-ray spectroscopy of cylindrical tracers
    Autor
    Barrios, M. A.
    Liedahl, D. A.
    Schneider, M. B.
    Jones, O.
    Landen, O.
    Kauffman, R. L.
    Suter, L. J.
    Moody, J. D.
    Rose, S. J.
    Wark, J. S.
    Pérez Callejo, GabrielAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    American Institute of Physics
    Descripción
    Producción Científica
    Documento Fuente
    Physics of Plasmas, Noviembre 2020, vol. 27, p. 112714
    Abstract
    The indirect drive approach to inertial confinement fusion has undergone important advances in the past few years. Improvements in temperature and density diagnostic methods are leading to more accurate measurements of the plasma conditions inside the Hohlraum and therefore to more efficient experimental designs. The implementation of dot spectroscopy has proven to be a versatile approach to extracting space- and time-dependent electron temperatures. In this method, a microdot of a mid-Z material is placed inside the Hohlraum and its K-shell emission spectrum is used to determine the plasma temperature. However, radiation transport of optically thick lines acting within the cylindrical dot geometry influences the outgoing spectral distribution in a manner that depends on the viewing angle. This angular dependence has recently been studied in the high energy density regime at the OMEGA laser facility, which allowed us to design and benchmark appropriate radiative transfer models that can replicate these geometric effects. By combining these models with the measurements from the dot spectroscopy experiments at the National Ignition Facility, we demonstrate here a novel technique that exploits the transport effects to obtain time-resolved measurements of the ion density of the tracer dots, without the need for additional diagnostics. We find excellent agreement between experiment and simulation, opening the possibility of using these geometric effects as a density diagnostic in future experiments.
    ISSN
    1070-664X
    Revisión por pares
    SI
    DOI
    10.1063/5.0012474
    Patrocinador
    G.P.-C., S. J. R. and J. S. W. gratefully acknowledge support from LLNL under grant number B617350. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64400
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • DEP33 - Artículos de revista [198]
    Show full item record
    Files in this item
    Nombre:
    PerezCallejo_PoP_2020.pdf
    Tamaño:
    1.136Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10