• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64489

    Título
    Error Analysis of Projection Methods for Non inf-sup Stable Mixed Finite Elements: The Navier–Stokes Equations
    Autor
    Frutos Baraja, Francisco Javier deAutoridad UVA Orcid
    García Archilla, Bosco
    Novo, Julia
    Año del Documento
    2017
    Documento Fuente
    Journal of Scientific Computing, vol 74, p. 426-455
    Abstract
    We obtain error bounds for a modi ed Chorin-Teman (Euler non- incremental) method for non inf-sup stable mixed nite elements ap- plied to the evolutionary Navier-Stokes equations. The analysis of the classical Euler non-incremental method is obtained as a particu- lar case. We prove that the modi ed Euler non-incremental scheme has an inherent stabilization that allows the use of non inf-sup stable mixed nite elements without any kind of extra added stabilization. We show that it is also true in the case of the classical Chorin-Temam method. The relation of the methods with the so called pressure sta- bilized Petrov Galerkin method (PSPG) is established. We do not assume non-local compatibility conditions for the solution.
    Materias (normalizadas)
    Matemáticas
    Análisis Numérico
    Materias Unesco
    1206 Análisis Numérico
    Palabras Clave
    Projection methods
    non inf-sup stable elements
    Navier-Stokes equations
    PSPG stabilization
    ISSN
    0885-7474
    Revisión por pares
    SI
    DOI
    10.1007/s10915-017-0446-3
    Patrocinador
    J. de Frutos y J. Novo Grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE).
    B. García-Archilla: Research under Grant MTM2015-65608-P (MINECO, ES).
    Version del Editor
    https://link.springer.com/article/10.1007/s10915-017-0446-3
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64489
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    projection_nonstable_parteII_v3.pdf
    Tamaño:
    351.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10