• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64831

    Título
    A new post-processing proposal for improving biometric gait recognition using wearable devices
    Autor
    Salvador Ortega, Irene
    Vivaracho Pascual, Carlos EnriqueAutoridad UVA Orcid
    Simón Hurtado, María AránzazuAutoridad UVA Orcid
    Año del Documento
    2023-01-17
    Editorial
    MDPI
    Documento Fuente
    Sensors 2023, Vol. 23, no. 3, pp. 1054
    Resumo
    In this work, a novel Window Score Fusion post-processing technique for biometric gait recognition is proposed and successfully tested. We show that the use of this technique allows recognition rates to be greatly improved, independently of the configuration for the previous stages of the system. For this, a strict biometric evaluation protocol has been followed, using a biometric database composed of data acquired from 38 subjects by means of a commercial smartwatch in two different sessions. A cross-session test (where training and testing data were acquired in different days) was performed. Following the state of the art, the proposal was tested with different configurations in the acquisition, pre-processing, feature extraction and classification stages, achieving improvements in all of the scenarios; improvements of 100% (0% error) were even reached in some cases. This shows the advantages of including the proposed technique, whatever the system.
    Palabras Clave
    gait recognition; smartwatch; accelerometer sensor; window fusion technique; cross-session tests
    Revisión por pares
    SI
    DOI
    10.3390/s23031054
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64831
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [109]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    sensors-23-01054-v2.pdf
    Tamaño:
    15.64Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10