• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64833

    Título
    Using the score ratio with distance-based classifiers: A theoretical and practical study in biometric signature recognition
    Autor
    Vivaracho Pascual, Carlos EnriqueAutoridad UVA Orcid
    Simón Hurtado, María AránzazuAutoridad UVA Orcid
    Manso Martinez, Esperanza
    Año del Documento
    2017-07-26
    Editorial
    Elsevier
    Documento Fuente
    Neurocomputing, Volume 248, Pages 57-66, 26 July, 2017
    Résumé
    The binary classification problem where an input is classified as belonging or not to a certain class, the so-called Target Class (TC), is approached here. This problem can be stated as a basic hypothesis test: X is from the TC (H0) vs. X is not from the TC (H1), where X is the classifier input. When probabilistic models are used (e.g., Hidden Markov Models or Gaussian Mixture Models), the likelihood ratio, p(X/H0)/p(X/H1), is an alternative widely used to improve the classification. However, as far as we know, this ratio is not usually applied with distance-based classifiers (e.g., Dynamic Time Warping). Following that idea, here we propose making the decision based not only on the score (“score” being the classifier output) assuming X to be from the TC (H0), but also using the score assuming X is not from the TC (H1), by means of the ratio between both scores: the score ratio. The proposal is tested in biometric person authentication using manuscript signature, with three different state-of-the-art systems based on distance classifiers. Different alternatives for applying the proposal are shown in order to reduce the computer load, should it prove necessary. Using the score ratio has led to improvements in most of the tests performed. The best verification results were achieved using our proposal, with the best ones without the score ratio being improved by an average of 22%.
    Palabras Clave
    Score ratio, Signature verification, Distance-based classifier
    Revisión por pares
    SI
    DOI
    10.1016/j.neucom.2016.11.080
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64833
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [109]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    ArticuloPublicado.pdf
    Tamaño:
    928.4Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10