• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64870

    Título
    State space models for estimating and forecasting fertility
    Autor
    Rodríguez del Tío, María PilarAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Año del Documento
    2010
    Editorial
    Elsevier
    Documento Fuente
    International Journal of Forecasting 26 (2010) 712–724
    Abstract
    We introduce multivariate State-Space Models to estimate and forecast fertility rates that are dynamic alternatives to logistic representations for fixed time points. Strategies for Kalman filter initialization and convergence of likelihood optimization are provided. The broad impact of the new methodology in practice is proven using data series from Spain, Sweden and Australia and comparing the results with a recent approach based on Functional Data analysis and with official forecasts. Very satisfactory short and medium term forecasts are obtained. Besides, the new modeling proposal provides practitioners with several suitable interpretative tools and this application is one interesting example that shows the usefulness of the State-Space representation to model a real multivariate process.
    ISSN
    0169-2070
    Revisión por pares
    SI
    DOI
    10.1016/j.ijforecast.2009.09.008
    Version del Editor
    https://www.sciencedirect.com/journal/international-journal-of-forecasting
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64870
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP24 - Artículos de revista [78]
    Show full item record
    Files in this item
    Nombre:
    RuedaRodriguez5.pdf
    Tamaño:
    194.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10