• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64938

    Título
    An experimental comparative evaluation of Machine Learning techniques for motor fault diagnosis under various operating conditions
    Autor
    Martín Diaz, IgnacioAutoridad UVA
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Romero Troncoso, René de Jesús
    Año del Documento
    2018-02
    Editorial
    IEEE
    Documento Fuente
    IEEE Transactions on Industry Applications, May/Jun 2018, 54, 3, 2215-2224,
    Résumé
    The diagnosis of electric machines, such as induc-tion motors, is one of the key tasks that needs to be performed to guarantee their right operation as electromechanical energy con-verters in most industrial facilities. The ability to reliably identify a mechanical fault occurrence before it becomes catastrophic can reduce risks related to the productive chain. Recently, different in-telligent approaches have been proposed to develop feature-based methods for automatic rotor fault diagnosis of induction motors. This paper provides an experimental comparative evaluation of different machine learning techniques for rotor fault identifica-tions. The classifiers are tested with data obtained under different operating conditions of the ones used to train them, as it is usual in industry. The input information is obtained from current signals of an induction motor with two states of rotor bar degradation under two preestablished load levels.
    ISSN
    0093-9994
    Revisión por pares
    SI
    DOI
    10.1109/TIA.2018.2801863
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/64938
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP45 - Artículos de revista [47]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Experimental Comparative.pdf
    Tamaño:
    1.263Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10