• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65227

    Título
    Intelligent System for Identification of Wheelchair User’s Posture Using Machine Learning Techniques
    Autor
    Serrano Gutiérrez, JorgeAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    IEEE
    Documento Fuente
    IEEE Sensors Journal, vol. 19, no. 5, pp. 1936-1942, 2019,
    Résumé
    This paper presents an intelligent system aimed at detecting a person’s posture when sitting in a wheelchair. The main use of the proposed system is to warn an improper posture to prevent major health issues. A network of sensors is used to collect data that are analyzed through a scheme involving the following stages: selection of prototypes using condensed nearest neighborhood rule (CNN), data balancing with the Kennard–Stone algorithm, and reduction of dimensionality through principal component analysis. In doing so, acquired data can be both stored and processed into a micro controller. Finally, to carry out the posture classification over balanced, pre-processed data, and the K-nearest neighbors algorithm is used. It turns to be an intelligent system reaching a good tradeoff between the necessary amount of data and performance is accomplished. As a remarkable result, the amount of required data for training is significantly reduced while an admissible classification performance is achieved being a suitable trade given the device conditions.
    Revisión por pares
    SI
    DOI
    10.1109/JSEN.2018.2885323
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65227
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP32 - Artículos de revista [284]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Intelligent_System_for_Identification_of_Wheelchair_Users_Posture_Using_Machine_Learning_Techniques.pdf
    Tamaño:
    1.859Mo
    Formato:
    Adobe PDF
    Descripción:
    Artículo en PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10