• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65229

    Título
    Prototype reduction algorithms comparison in nearest neighbor classification for sensor data: Empirical study
    Autor
    Serrano Gutiérrez, JorgeAutoridad UVA Orcid
    Congreso
    2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM)
    Año del Documento
    2017
    Editorial
    IEEE
    Abstract
    This work presents a comparative study of prototype selection (PS) algorithms. Such a study is done over data-from-sensor acquired by an embedded system. Particularly, five flexometers are used as sensors, which are located inside a glove aimed to read sign language. Measures were taken to quantify the balance between classification performance and reduction training set data (QCR) with k neighbors equal to 3 and 1 to force the classifier (kNN) to the maximum. Two tests were used: (a)the QCR performance and (b) the embedded system decision in real proves. As result the Random Mutation Hill Climbing (RMHC) algorithm is considered the best option to choose in this data type with removed instances at 87% and classification performance at 82% in software tests, also the classifier kNN must be with k=3 to improve the classification performance. In a real situation, with the algorithm implemented. The system makes correct decisions at 81% with 5 persons doing sign language in real time.
    DOI
    10.1109/ETCM.2017.8247530
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65229
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP32 - Comunicaciones a congresos, conferencias, etc. [56]
    Show full item record
    Files in this item
    Nombre:
    Prototype_reduction_algorithms_comparison_in_nearest_neighbor_classification_for_sensor_data_Empirical_study.pdf
    Tamaño:
    615.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10