• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65260

    Título
    Computational study on the affinity of potential drugs to SARS-CoV-2 main protease
    Autor
    Martín Hernández, Verónica
    Sanz Novo, MiguelAutoridad UVA
    León Ona, IkerAutoridad UVA
    Redondo Cristóbal, María del PilarAutoridad UVA Orcid
    Largo Cabrerizo, AntonioAutoridad UVA Orcid
    Barrientos Benito, María CarmenAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    IOP Publishing
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Physics: Condensed Matter, 2022, vol. 34, n. 29, 294005
    Résumé
    Herein, we report a computational investigation of the binding affinity of dexamethasone, betamethasone, chloroquine and hydroxychloroquine to SARS-CoV-2 main protease using molecular and quantum mechanics as well as molecular docking methodologies. We aim to provide information on the anti-COVID-19 mechanism of the abovementioned potential drugs against SARS-CoV-2 coronavirus. Hence, the 6w63 structure of the SARS-CoV-2 main protease was selected as potential target site for the docking analysis. The study includes an initial conformational analysis of dexamethasone, betamethasone, chloroquine and hydroxychloroquine. For the most stable conformers, a spectroscopic analysis has been carried out. In addition, global and local reactivity indexes have been calculated to predict the chemical reactivity of these molecules. The molecular docking results indicate that dexamethasone and betamethasone have a higher affinity than chloroquine and hydroxychloroquine for their theoretical 6w63 target. Additionally, dexamethasone and betamethasone show a hydrogen bond with the His41 residue of the 6w63 protein, while the interaction between chloroquine and hydroxychloroquine with this amino acid is weak. Thus, we confirm the importance of His41 amino acid as a target to inhibit the SARS-CoV-2 Mpro activity.
    Palabras Clave
    molecular docking
    dexamethasone
    betamethasone
    chloroquine
    hydroxychloroquine
    SARS-CoV-2 main protease
    ISSN
    0953-8984
    Revisión por pares
    SI
    DOI
    10.1088/1361-648X/ac6c6c
    Version del Editor
    https://iopscience.iop.org/article/10.1088/1361-648X/ac6c6c
    Propietario de los Derechos
    © 2022 IOP Publishing Ltd
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/65260
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP63 - Artículos de revista [324]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    2022-J.Phys.Condens.Matter-SARS-CoV-2.pdf
    Tamaño:
    2.145Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10