• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65502

    Título
    Clustering Analysis for Automatic Certification of LMS Strategies in a University Virtual Campus
    Autor
    Regueras Santos, Luisa MaríaAutoridad UVA
    Verdú Pérez, María JesúsAutoridad UVA Orcid
    Castro Fernández, Juan Pablo deAutoridad UVA Orcid
    Verdú Pérez, Elena
    Año del Documento
    2019
    Editorial
    IEEE
    Documento Fuente
    L. M. Regueras, M. J. Verdú, J. P. De Castro and E. Verdú, "Clustering Analysis for Automatic Certification of LMS Strategies in a University Virtual Campus," in IEEE Access, vol. 7, pp. 137680-137690, 2019, doi: 10.1109/ACCESS.2019.2943212
    Zusammenfassung
    In recent years, the use of Learning Management Systems (LMS) has grown considerably. This has had a strong effect on the learning process, particularly in higher education. Most universities incorporate LMS as a complement to face-to-face classes in order to improve the student learning process. However, not all teachers use LMS in the same way and universities lack the tools to measure and quantify their use effectively. This study proposes a method to automatically classify and certify teacher competence in LMS from the LMS data. Objective knowledge of actual LMS use will help the university and its faculty to make strategic decisions. The information produced will be used to support teachers and institutions in the classification and design of courses by showing the different LMS usage patterns of teachers and students. In this study, we processed the structure of 3,303 courses and two million interactive events to obtain a classification model based on LMS usage patterns in blended learning. Three clustering methods were compared to find which one was best suited to our problem. The resulting model is clearly related to different course archetypes that can be used to describe the actual use of LMS. We also performed analyses of prediction accuracy and of course typologies across course attributes (academic disciplines and level and academic performance indicators). The results of this study will be used as the basis for an automatic expert system that automatically certifies teacher competence in LMS as evidenced in each course.
    Palabras Clave
    Data mining; Education;Tools; Clustering methods; Feature extraction; Clustering methods; Data mining; Learning systems; Machine learning
    Revisión por pares
    SI
    DOI
    10.1109/ACCESS.2019.2943212
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65502
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Clustering_Analysis_for_Automatic_Certification_of_LMS_Strategies_in_a_University_Virtual_Campus.pdf
    Tamaño:
    7.015Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10