• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65510

    Título
    Clustering of LMS Use Strategies with Autoencoders
    Autor
    Verdú Pérez, María JesúsAutoridad UVA Orcid
    Regueras Santos, Luisa MaríaAutoridad UVA
    Castro Fernández, Juan Pablo deAutoridad UVA Orcid
    Verdú Pérez, Elena
    Año del Documento
    2023
    Editorial
    Dimitris Mourtzis
    Documento Fuente
    Verdú, M.J.; Regueras, L.M.; de Castro, J.P.; Verdú, E. Clustering of LMS Use Strategies with Autoencoders. Appl. Sci. 2023, 13, 7334. https://doi.org/10.3390/app13127334
    Résumé
    Learning Management Systems provide teachers with many functionalities to offer materials to students, interact with them and manage their courses. Recognizing teachers’ instructing styles from their course designs would allow recommendations and best practices to be made. We propose a method that determines teaching style in an unsupervised way from the course structure and use patterns. We define a course classification approach based on deep learning and clustering. We first use an autoencoder to reduce the dimensionality of the input data, while extracting the most important characteristics; thus, we obtain a latent representation of the courses. We then apply clustering techniques to the latent data to group courses based on their use patterns. The results show that this technique improves the clustering performance while avoiding the manual data pre-processing work. Furthermore, the obtained model defines seven course typologies that are clearly related to different use patterns of Learning Management Systems.
    Palabras Clave
    autoencoders; clustering; deep learning; educational data mining; learning management system; unsupervised learning
    Revisión por pares
    SI
    DOI
    10.3390/app13127334
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65510
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Clustering of LMS Use Strategies with Autoencoders.pdf
    Tamaño:
    2.379Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10