• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65594

    Título
    Assessment of feature selection and clasification approaches to enhance information from overnight oxymetry in the context of apnea diagnosis
    Autor
    Álvarez González, DanielAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Marcos Martín, José Víctor
    Wessel, Niels
    Penzel, Thomas
    Glos, Martin
    Campo Matias, Félix delAutoridad UVA Orcid
    Año del Documento
    2013
    Editorial
    WORLD SCIENTIFIC PUBLISHING
    Descripción
    Producción Científica
    Documento Fuente
    International Journal of Neural Systems, 2013, vol. 23, n. 5, p. 1-18.
    Zusammenfassung
    This study is aimed at assessing the usefulness of different feature selection and classification methodologies in the context of sleep apnea hypopnea syndrome (SAHS) detection. Feature extraction, selection and classification stages were applied to analyze blood oxygen saturation (SaO2) recordings in order to simplify polysomnography (PSG), the gold standard diagnostic methodology for SAHS. Statistical, spectral and nonlinear measures were computed to compose the initial feature set. Principal component analysis (PCA), forward stepwise feature selection (FSFS) and genetic algorithms (GAs) were applied to select feature subsets. Fisher’s linear discriminant (FLD), logistic regression (LR) and support vector machines (SVMs) were applied in the classification stage. Optimum classification algorithms from each combination of these feature selection and classification approaches were prospectively validated on datasets from two independent sleep units. FSFS+LR achieved the highest diagnostic performance using a small feature subset (4 features), reaching 83.2% accuracy in the validation set and 88.7% accuracy in the test set. Similarly, GAs+SVM also achieved high generalization capability using a small number of input features (7 features), with 84.2% accuracy on the validation set and 84.5% accuracy in the test set. Our results suggest that reduced subsets of complementary features (25% to 50% of total features) and classifiers with high generalization ability could provide high-performance screening tools in the context of SAHS.
    ISSN
    0129-0657
    Revisión por pares
    SI
    DOI
    10.1142/S0129065713500202
    Patrocinador
    This research was supported in part by the Ministerio de Economía y Competitividad and FEDER under project TEC2011-22987, the Proyecto Cero 2011 on Ageing from Fundación General CSIC, Obra Social La Caixa and CSIC and project VA111A11-2 from Consejería de Educación (Junta de Castilla y León). D. Álvarez was in receipt of a PIRTU grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund (ESF).
    Version del Editor
    https://www.worldscientific.com/doi/abs/10.1142/S0129065713500202
    Propietario de los Derechos
    WORLD SCIENTIFIC PUBLISHING
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65594
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    (2)Alvarez_et_al_IJNS-2013(accepted_version).pdf
    Tamaño:
    745.5Kb
    Formato:
    Adobe PDF
    Descripción:
    Accepted version
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10