• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65597

    Título
    Automated Prediction of the Apnea-Hypopnea Index from Nocturnal Oximetry Recordings
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Aboy, M.
    Campo Matias, Félix delAutoridad UVA Orcid
    Año del Documento
    2012
    Editorial
    IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Transactions on Biomedical Engineering, 2012, vol. 59, n. 1, p. 141-149.
    Résumé
    Nocturnal polysomnography (PSG) is the goldstandard for sleep apnea-hypopnea syndrome (SAHS) diagnosis. It provides the value of the apnea-hypopnea index (AHI), which is used to evaluate SAHS severity. However, PSG is costly, complex, and time-consuming. We present a novel approach for automatic estimation of the AHI from nocturnal oxygen saturation (SaO2 ) recordings and the results of an assessment study designed to characterize its performance. A set of 240 SaO2 signals was available for the assessment study. The data were divided into training (96 signals) and test (144 signals) sets for model optimization and validation, respectively. Fourteen time-domain and frequency-domain features were used to quantify the effect of SAHS on SaO2 recordings. Regression analysis was performed to estimate the functional relationship between the extracted features and the AHI. Multiple linear regression (MLR) and multilayer perceptron (MLP) neural networks were evaluated. The MLP algorithm achieved the highest performance with an intraclass correlation coefficient (ICC) of 0.91. The proposed MLP-based method could be used as an accurate and cost-effective procedure for SAHS diagnosis in the absence of PSG.
    ISSN
    0018-9294
    Revisión por pares
    SI
    DOI
    10.1109/TBME.2011.2167971
    Patrocinador
    This work was supported in part by the Ministerio de Ciencia e Innovación and FEDER under Grant TEC 2008-02241, and in part by the grant project from the Consejería de Sanidad de la Junta de Castilla y León GRS 337/A/09.
    Version del Editor
    https://ieeexplore.ieee.org/document/6019022
    Propietario de los Derechos
    IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65597
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    (S1)Marcos_et_al_TBME-2012(accepted_version).pdf
    Tamaño:
    324.0Ko
    Formato:
    Adobe PDF
    Descripción:
    Accepted version
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10