• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65616

    Título
    CMMSE: Analysis of order reduction when Lawson methods integrate nonlinear initial boundary value problems
    Autor
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Wiley Online Library
    Descripción
    Producción Científica
    Documento Fuente
    Mathematical Methods in the Applied Sciences, Noviembre 2022, issue 17, p.10503-11980
    Abstract
    In this paper a thorough analysis is carried out of the type of order reductionthat Lawson methods exhibit when used to integrate nonlinear initial boundaryvalue problems. In particular, we focus on nonlinear reaction-diffusion prob-lems, and therefore, this study is important in a large number of practicalapplications modeled by this type of nonlinear equations. A theoretical study ofthe local and global error of the total discretization of the problem is carried out,taking into account both, the error coming from the space discretization andthat due to the integration in time. These results are also corroborated by thenumerical experiments performed in this paper.
    Revisión por pares
    SI
    DOI
    10.1002/mma.8451
    Patrocinador
    Este trabajo forma parte de los proyecto de investigación: PGC2018-101443-B-I00(Ministerio de Ciencia e Innovación andRegional Development European Funds) y VA169P20 ( Junta de Castillay León and Feder)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65616
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    Cano-mmas_2022.pdf
    Tamaño:
    750.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10