• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65617

    Título
    Why Improving the Accuracy of Exponential Integrators Can Decrease Their Computational Cost?
    Autor
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Reguera, Nuria
    Año del Documento
    2021
    Editorial
    MDPI
    Documento Fuente
    Mathematics Abril 2021, 9(9), 1008
    Abstract
    In previous papers, a technique has been suggested to avoid order reduction when inte- grating initial boundary value problems with several kinds of exponential methods. The technique implies in principle to calculate additional terms at each step from those already necessary without avoiding order reduction. The aim of the present paper is to explain the surprising result that, many times, in spite of having to calculate more terms at each step, the computational cost of doing it through Krylov methods decreases instead of increases. This is very interesting since, in that way, the methods improve not only in terms of accuracy, but also in terms of computational cost.
    Revisión por pares
    SI
    DOI
    10.3390/math9091008
    Patrocinador
    Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación and Regional Development European Funds a través del proyecto PGC2018-101443-B-I00 y por Junta de Castilla y León y Feder a través del proyecto VA169P20
    Version del Editor
    https://www.mdpi.com/2227-7390/9/9/1008
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65617
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    Cano-mathematics_2021.pdf
    Tamaño:
    795.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10