• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65756

    Título
    Automatic gauze tracking in laparoscopic surgery using image texture analysis
    Autor
    Muñoz García, Álvaro
    Santos del Blanco, Lidia
    Fuente López, Eusebio de laAutoridad UVA Orcid
    Fraile Marinero, Juan CarlosAutoridad UVA Orcid
    Pérez Turiel, JavierAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    ELSEVIER
    Descripción
    Producción Científica
    Documento Fuente
    Automatic gauze tracking in laparoscopic surgery using image texture analysis, Computer Methods and Programs in Biomedicine, Volume 190, 2020, 105378, ISSN 0169-2607
    Abstract
    Background and Objective Inadvertent retained surgical gauzes are an infrequent medical error but can have devastating consequences in the patient health and in the surgeon professional reputation. This problem seems easily preventable implementing standardized protocols for counting but due to human errors it still persists in surgery. The omnipresence of gauzes, their small size, and their similar appearance with tissues when they are soaked in blood make this error eradication really complex. In order to reduce the risk of accidental retention of surgical sponges in laparoscopy operations, in this paper we present an image processing system that tracks the gauzes on the video captured by the endoscope. Methods The proposed image processing application detects the presence of gauzes in the video images using texture analysis techniques. The process starts dividing the video frames into square blocks and each of these blocks is analyzed to determine whether it is similar to the gauze pattern. The video processing algorithm has been tested in a laparoscopic simulator under different conditions: with clean, slightly stained and soaked in blood gauzes as well as against different biological background tissues. Several methods, including different Local Binary Patterns (LBP) techniques and a convolutional neural network (CNN), have been analyzed in order to achieve a reliable detection in real time. Results The proposed LBP algorithm classifies the individual blocks in the image with 98% precision and 94% sensitivity which is sufficient to make a robust detection of any gauze that appears in the endoscopic video even if it is stained or soaked in blood. The results provided by the CNN are superior with 100% precision and 97% sensitivity, but due to the high computational demand, real-time video processing is not attainable in this case with standard hardware. Conclusions The algorithm presented in this paper is a valuable tool to avoid the retention of surgical gauzes not only because of its reliability but also because it processes the video transparently and unattended, without the need for additional manipulation of special equipment in the operating room.
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2020.105378
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades – Programa Estatal de I+D+i Orientado a Retos de la Sociedad - Plan Estatal de I+D+i 2017-2020 PID2019-111023RB-C33
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S016926071931291X
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65756
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Automatic gauze tracking in laparoscopic surgery using image texture.pdf
    Tamaño:
    3.040Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10