• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65761

    Título
    Gauze detection and segmentation in minimally invasive surgery video using convolutional Neural Networks
    Autor
    Sánchez Brizuela, GuillermoAutoridad UVA
    Santos Criado, Francisco Javier
    Sanz Gobernado, Daniel
    Fuente López, Eusebio de laAutoridad UVA Orcid
    Fraile Marinero, Juan CarlosAutoridad UVA Orcid
    Pérez Turiel, JavierAutoridad UVA Orcid
    Cisnal De La Rica, AnaAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    MDPI
    Documento Fuente
    Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks. Sensors 2022, 22, 5180
    Resumen
    Medical instruments detection in laparoscopic video has been carried out to increase the autonomy of surgical robots, evaluate skills or index recordings. However, it has not been extended to surgical gauzes. Gauzes can provide valuable information to numerous tasks in the operating room, but the lack of an annotated dataset has hampered its research. In this article, we present a segmentation dataset with 4003 hand-labelled frames from laparoscopic video. To prove the dataset potential, we analyzed several baselines: detection using YOLOv3, coarse segmentation, and segmentation with a U-Net. Our results show that YOLOv3 can be executed in real time but provides a modest recall. Coarse segmentation presents satisfactory results but lacks inference speed. Finally, the U-Net baseline achieves a good speed-quality compromise running above 30 FPS while obtaining an IoU of 0.85. The accuracy reached by U-Net and its execution speed demonstrate that precise and real-time gauze segmentation can be achieved, training convolutional neural networks on the proposed dataset.
    Palabras Clave
    convolutional neural networks; image segmentation; image object detection; surgical tool detection; minimally invasive surgery
    Revisión por pares
    SI
    DOI
    10.3390/s22145180
    Version del Editor
    https://www.mdpi.com/1424-8220/22/14/5180
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65761
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [54]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks.pdf
    Tamaño:
    2.930Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10