• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65793

    Título
    Pattern recognition in airflow recordings to assist in the sleep apnoea–hypopnoea syndrome diagnosis
    Autor
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Marcos Martín, José Víctor
    Campo Matias, Félix delAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2013
    Editorial
    SPRINGER
    Descripción
    Producción Científica
    Documento Fuente
    Medical & Biological Engineering & Computing, 2013, vol. 51, n. 12, p. 1367-1380.
    Zusammenfassung
    This paper aims at detecting sleep apnoea–hypopnoea syndrome (SAHS) from single-channel airflow (AF) recordings. The study involves 148 subjects. Our proposal is based on estimating the apnoea–hypopnoea index (AHI) after global analysis of AF, including the investigation of respiratory rate variability (RRV). We exhaustively characterize both AF and RRV by extracting spectral, nonlinear, and statistical features. Then, the fast correlation-based filter is used to select those relevant and non-redundant. Multiple linear regression, multi-layer perceptron (MLP), and radial basis functions are fed with the features to estimate AHI. A conventional approach, based on scoring apnoeas and hypopnoeas, is also assessed for comparison purposes. An MLP model trained with AF and RRV selected features achieved the highest agreement with the true AHI (intra-class correlation coefficient = 0.849). It also showed the highest diagnostic ability, reaching 92.5 % sensitivity, 89.5 % specificity and 91.5 % accuracy. This suggests that AF and RRV can complement each other to estimate AHI and help in SAHS diagnosis.
    ISSN
    0140-0118
    Revisión por pares
    SI
    DOI
    10.1007/s11517-013-1109-7
    Patrocinador
    This research was supported in part by the "Consejería de Educación (Junta de Castilla y León)" under project VA111A11-2, the Project Cero 2011 on Ageing from Fundación General CSIC, and project TEC2011-22987 from Ministerio de Economía y Competitividad and FEDER. G. C. Gutiérrez-Tobal was in receipt of a PIRTU grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund (ESF).
    Version del Editor
    https://link.springer.com/article/10.1007/s11517-013-1109-7
    Propietario de los Derechos
    SPRINGER
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65793
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    (3)Gutierrez-Tobal_et_al_MBEC-2013(accepted_version).pdf
    Tamaño:
    1.324Mb
    Formato:
    Adobe PDF
    Descripción:
    Accepted version
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10