• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65875

    Título
    Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks
    Autor
    Menchon Lara, Rosa MaríaAutoridad UVA
    Bastida Jumilla, María Consuelo
    Morales Sánchez, Juan
    Sancho Gómez, José Luis
    Año del Documento
    2013
    Documento Fuente
    Med Biol Eng Comput, 52, 169–181 (2014)
    Résumé
    Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness.
    ISSN
    0140-0118
    Revisión por pares
    SI
    DOI
    10.1007/s11517-013-1128-4
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65875
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    MBECpaper.pdf
    Tamaño:
    900.5Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10